AQUATIC COMMUNITY CHARACTERISTICS INFLUENCE THE FORAGING PATTERNS OF TREE SWALLOWS

JOHN P. McCARTY

Division of Biological Sciences, Section of Ecology and Systematics,
Cornell University, Ithaca, NY 14853

Abstract: During periods of inclement spring weather, Tree Swallows (Tachycineta bicolor) were observed foraging close to the surface of a series of experimentally manipulated ponds. Censuses of foraging swallows during these periods indicated that the use of ponds for foraging was positively affected by earlier additions of nutrients and the removal of fish from the ponds. Collections of emerging insects from these ponds indicated that nutrient additions and the removal of fish greatly increased the numbers of insects emerging from those ponds. The ability of Tree Swallows to exploit local concentrations of food may be critical to their ability to return to the breeding grounds before aerial insects are reliably available.

Key words: Tree Swallow, Tachycineta bicolor, foraging, experimental pond communities, trophic cascade.

Tree Swallows (Tachycineta bicolor) are aerial insectivores that rely heavily for their food on adult stages of insects with aquatic larvae. However, individuals typically arrive on their breeding grounds in northern North America before weather conditions ensure a constant supply of aerial insects (Robertson et al. 1992, McCarty 1995). Tree Swallows have several traits that help them to survive periods of low food availability (Weatherhead et al. 1985, Stutchbury and Robertson 1990). Unlike other swallows, Tree Swallows are able to subsist for long periods of time on fruit, especially bay-berries (Myrica spp.), when insects are not available (Chapman 1955, Turner and Rose 1989, Place and Stiles 1992). Tree Swallows also may increase their ability to survive stressful periods by adjusting their foraging to exploit localized food sources such as emerging aquatic insects (Dence 1946, Cohen and Dymerski 1986). The ability to exploit such local concentrations of available insects undoubtedly influences the ability of Tree Swallows to return to their breeding area early in the season. In this paper, I report observations of locally concentrated foraging activity by Tree Swallows associated with both the biotic and abiotic characteristics of the aquatic communities over which they forage. This information is significant because it shows that Tree Swallows are able to perceive and exploit small patches of abundant food and because it demonstrates an influence of aquatic community dynamics on the ecology of a terrestrial bird.

METHODS

This study was conducted at the Cornell University Experimental Ponds Facility Unit Two, located northeast of Ithaca, New York (42°30′N, 76°27′W), during April and early May 1992. This site consists of 50, 0.1-ha artificial ponds and a 5-ha reservoir (see Hall et al. 1970 for a detailed description of the site). In 1992, 15 pairs of Tree Swallows bred at the site, and an additional 78 pairs of Tree Swallows bred at a second site, Ponds Unit One, located 2 km away. Early in the breeding season, large numbers of migrant swallows and breeding Tree Swallows from this second site forage at Ponds Unit Two.

At the time of this study, 16 of the 50 ponds were part of an experiment manipulating nutrients and animal communities. Ponds were manipulated in a 2 × 2 factorial design with four ponds per treatment combination (Morin et al. 1991, Hairston and Howarth, unpubl. data). Manipulations consisted of high phosphorus (HP) or low phosphorus (LP) additions, combined with either fish present (+F) or fish absent (−F), to create the four treatments of: HP + F; LP + F; HP − F; LP − F (Morin et al. 1991, Hairston and Howarth, unpubl. data). Ponds were fertilized with P in the form of H₂PO₄ twice weekly during the summer of 1991, with HP ponds receiving P at a rate of 0.56 g·m⁻³·year⁻¹ and LP ponds receiving 0.056 g·m⁻³·year⁻¹. Fish-present ponds
TABLE 1. Insect emergence from experimental ponds. Mean numbers of insects per pond per day (±SE) are given for each treatment. Emergence is significantly influenced by pond treatment, with ponds with high levels of nutrient additions and no fish (HN - F) being significantly higher than all other treatments \((F_{3,24} = 5.47, P = 0.005)\). HN = high levels of nutrients added; LN = low levels of nutrients added; +F = fish present in the ponds, -F = fish absent from ponds, \(n = \) the number of samples from each treatment type.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Insects/trap</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>HN - F</td>
<td>423 ± 159</td>
<td>6</td>
</tr>
<tr>
<td>LN - F</td>
<td>92 ± 28</td>
<td>8</td>
</tr>
<tr>
<td>HN + F</td>
<td>83 ± 14</td>
<td>11</td>
</tr>
<tr>
<td>LN + F</td>
<td>33 ± 15</td>
<td>3</td>
</tr>
</tbody>
</table>

had populations of fathead minnows \((Pimephales promelas)\), whereas fish-absent ponds had no fish present. Minnows initially were added to the ponds in the fall of 1990 at densities of approximately 10 g \(m^{-3}\) for the +F ponds, while -F ponds contained less than 0.001 g \(m^{-3}\) (Hastison and Howarth, unpubl. data). In 1990, I measured production of insects from these ponds using floating emergence traps (Morgan et al. 1963). Ponds had received either high levels of nutrient additions \((HN; 12.1 \text{ g} \cdot \text{m}^{-3} \cdot \text{year}^{-1})\) of \(\text{NH}_4\text{NO}_3\) plus 0.56 g \(\text{m}^{-3} \cdot \text{year}^{-1}\) of \(\text{H}_2\text{PO}_4\) or low levels of nutrient additions \((LN; 0.56 \text{ g} \cdot \text{m}^{-3} \cdot \text{year}^{-1}\) of \(\text{H}_2\text{PO}_4\) paired with fish present (+F) and fish absent (-F) to form four treatment groups (Table 1).

During the breeding season, Tree Swallows usually forage widely around the breeding site and show no preference for individual ponds (pers. observ.). They spend the majority of their time foraging at altitudes greater than 2 m (McCarty 1995), and usually do not exhibit group foraging described for other species of swallows (Emlen 1952, Emlen and Demberg 1975, Brown 1988). However, during cold, wet weather common in the pre-breeding season (late March to early May), I regularly observed swallows at Pond Unit Two congregating over particular ponds, dipping and catching insects at or near the surface of the water. Between 17 April and 4 May 1992 I visited this site on six of these wet, cold days and censused the number of swallows foraging over each pond at the facility. For each census I circled the grounds of the Ponds Unit two times, stopping at each pond twice and counting the number of swallows foraging within 2 m of the surface of the pond. The mean of the two counts was used as the level of foraging activity for that pond on that census day. Over 80% of foraging activity was observed over the 16 ponds in the experimental group. Only seven of the remaining 34 ponds experienced any foraging activity, and of these, two fishless ponds accounted for over 70% of the swallow activity observed away from the 16 experimental ponds. For all subsequent analyses I have focused on only the 16 ponds in the experimental group, because they accounted for most of the foraging activity observed and because accurate information about the nutrients and fish community were available for these ponds. Census means for each pond were summed and the effects of the pond treatments on foraging activity was analyzed using ANOVA.

RESULTS AND DISCUSSION

The emergence data indicate that both nutrient additions and the absence of fish tended to increase insect production (Table 1). A survey of insect larvae in the ponds during 1992 indicated that the nutrient treatments from 1991 produced the same pattern of high insect abundance associated with absence of fish and additions of nutrients (McCarty, unpubl. data).

There was a significant effect of pond treatment on foraging activity \((F_{3,12} = 20.8 \ P < 0.001, \text{Fig. 1}); \) activity over HP - F ponds was significantly higher than over any of the other treatments (Fisher's PLSD \(P < 0.05\)). There was a significant effect on foraging activity of Nutrients \((P < 0.001)\) and Fish \((P < 0.001)\), as well as a significant interaction between the two factors \((P = 0.001)\).

These results indicate that foraging of Tree Swallows is influenced by both biotic and abiotic characteristics of the aquatic community. Previous work has shown that both the foraging ecology (St. Louis et al. 1990, Blancher and McNicol 1991) and the reproductive success (Blancher and McNicol 1988, St. Louis and Barlow 1993) of Tree Swallows is affected by the pH of the water they forage over. My results show, that not only do the abiotic properties of ponds influence foraging, but the biotic community in the
ponds also affects foraging. It is clear that the
swallows are responding to differences in insect
emergence, but the mechanism causing the in-
creased insect emergence has not been studied.
Although addition of nutrients increases insect pro-
duction as expected, the presence of fish also
increases primary production (Morin et al 1991) but
has a negative effect on insect production (Table 1).
Therefore, fish must be having a direct, negative
effect on insect production. Fathead minnows feed
on small insect larvae (Becker 1983), and it is likely
that they, like other small predatory freshwater fish,
are reducing insect abundance through predation (Hambright et al. 1986, Diehl 1993). Other features
of the ponds with fish, such as low macrophyte
density, also may contribute to the decline in insect
abundance.

The effect of the pond community on the foraging
of Tree Swallows may have significant effects on
the survival and reproduction of swallows. Tree Swal-
loows are the first swallow species to return to cen-
tral New York in the spring (Bent 1942, Sheppard
1977). As aerial insectivores, they are at great risk
of starvation from periods of cold and wet weather
at this time, and high levels of adult mortality occur
in the spring (Weatherhead et al. 1985, Lombardo
1986, Littrell 1992). In addition to possible direct ef-
ects on survival, the ability to exploit localized food
resources during periods of low overall food abun-
dance may have an effect on the timing of breeding,
possibly through effects on nutritional condition (but
see Winkler and Allen 1996). The swallows at Ponds
Unit Two bred significantly earlier than did Tree
Swallows breeding at sites less than 5 km away
where the behaviors described here are not observed,
even though overall food availability was similar
(McCarty 1995). Whether this difference is due in
part to the availability of food during inclement
weather remains to be shown.

These results show that both biotic and abiotic
characteristics of aquatic communities influence the
foraging behavior of Tree Swallows. This effect
seems especially significant given that the aquatic
and terrestrial communities are often viewed as dis-
tinct systems, and treated as such in ecological re-
search. The influence of properties of the aquatic
community on insectivorous birds in this and other
studies suggests that analyses of communities and
food-webs delimited by the air-water boundary may
be ignoring important interactions between these sys-
tems.

I am grateful to Nelson Hairston, Jr. and Robert
Howarth for allowing me to work around their ponds
and for discussing their experimental manipulations
with me. The pond experiment was funded by Na-
tional Science Foundation grants BSR 9020302 and
BSR 8717134 to N. G. Hairston, Jr. and R. W.
Howarth. Robert Johnson is largely responsible for
making the Experimental Ponds Facility an efficient
and enjoyable place to work. Stephen Emlen, Nel-
son Hairston, Jr., David Haskell, David Winkler, and
L. LaReesa Wolfenbarger provided comments that
have greatly improved this paper.

LITERATURE CITED

Wisconsin Press, Madison, WI.
BENT, A. C. 1942. Life histories of North American
flycatchers, larks, swallows, and their allies.
U.S. Government Printing Office, Washington,
DC.
biology of Tree Swallows in relation to wet-
BLANCHER, P. J., AND D. K. McNICOL. 1991. Tree
Swallow diet in relation to wetland acidity. Can.
BROWN, C. R. 1988. Social foraging in Cliff Swal-
loows: local enhancement, risk sensitivity, com-
petition and the avoidance of predators. Anim.
Behav. 36:780–792.
CHAPMAN, L. B. 1955. Studies of a Tree Swallow
colony. III. Bird-Banding 26:45–70.
COHEN, R. R., AND M. L. DYMERSKI. 1986. Swallows
98:483–484.
DENCE, W. A. 1946. Tree Swallow mortality from
exposure during unseasonable weather. Auk
63:440.
DIEHL, S. 1993. Effects of habitat structure on re-
source availability, diet and growth of benthivo-
EMLEN, J. T., JR. 1952. Social behavior in nesting
significance of synchronized breeding in a colo-
1031.
An experimental approach to the production dy-
namics and structure of freshwater animal com-
HAMBRIGHT, K. D., R. J. TREBATOSKI, R. W. DRENNER,
AND D. KETTLE. 1986. Experimental study of the
impacts of bluegill (Lepomis macrornchirus) and
largemouth bass (Micropterus salmoides) on pond
Sci. 43:1171–1176.
LITTLER, E. E. 1992. Swallow mortality during the
"March miracle" in California. Cal. Fish Game
78:128–130.
LOMBARDO, M. P. 1986. Yearling-biased female mor-
in environmental conditions on the foraging
ecology and reproductive success of Tree Swal-
loows, Tachycineta bicolor. Ph.D. diss., Cornell
Univ., Ithaca, NY.
MORGAN, N. C., A. B. WADDIEL, AND W. B. HALL.
1963. A comparison of the catches of emerging
aquatic insects in floating box and submerged
MORIN, A., K. D. HAMBRIGHT, N. G. HAIRSTON JR.,
Consumer control of gross primary production in
THE MATING STRATEGIES OF EASTERN SCREECH-OWLS: A GENETIC ANALYSIS

SUNNI G. LAWLESS AND GARY RITCHISON
Department of Biological Sciences, Eastern Kentucky University, Richmond, KY 40475

PAUL H. KLATT
Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada

DAVID F. WESTNEAT
Center for Ecology, Evolution, and Behavior, T. H. Morgan School of Biological Sciences, 101 Morgan Building, University of Kentucky, Lexington, KY 40506-0225

Abstract: We used genetic analysis to examine the mating strategies of male and female Eastern Screech-Owls (Otus asio) in central Kentucky. DNA fingerprinting revealed no evidence of extra-pair fertilizations in 23 broods (80 nestlings). Such results suggest that pursuit of extra-pair copulations by male and female screech-owls may be costly. One possible cost for females is the risk of losing the nest site. Alternatively, pursuit of extra-pair matings by females might be energetically expensive, thereby conflicting with egg production. Male screech-owls provide food for their mate (and young) during much of the breeding season and such feeding probably affects reproductive success. Males pursuing EPCs might have less time for foraging and, as a result, reduced reproductive success.

Key words: extra-pair fertilizations, extra-pair copulations, Eastern Screech-Owls, Otus asio, DNA fingerprinting.

1 Received 1 March 1996. Accepted 21 August 1996.
2 Corresponding author.

Recent studies have provided abundant evidence that extra-pair copulations (EPCs) and fertilizations (EPFs) are important components of avian mating systems (reviewed by Birkhead and Möller 1992, Westneat and Webster 1994). However, these studies also reveal that the extent of extra-pair activity varies within populations and among species. Many factors may contribute to such variation. For example, opportunities for EPCs might vary with density (Birkhead and Möller 1992), the degree of breeding synchrony (Birkhead and Biggins 1987, Westneat et al. 1990, Stutchbury and Morton 1995), and features of the habitat (i.e., visually occluded habitats might make mate guarding more difficult; Sherman and Morton 1988). EPCs also might be more common in migratory species than in resident species (Westneat et al. 1990).

 Adequately testing these and other hypotheses requires data from a large number of populations and species. Although such data are appearing at an increasing rate, most studies focus on passerines. The objective of the present study was to investigate the mating system of a non-passerine, the Eastern Screech-Owl (Otus asio). Specifically, we used genetic analysis (DNA fingerprinting) to examine the